Update genetic

This commit is contained in:
2025-07-11 00:14:50 +07:00
parent 551480d618
commit c6b13ffd1e

View File

@@ -6,6 +6,7 @@ using Managing.Domain.Backtests;
using Managing.Domain.Bots; using Managing.Domain.Bots;
using Managing.Domain.MoneyManagements; using Managing.Domain.MoneyManagements;
using Managing.Domain.Risk; using Managing.Domain.Risk;
using Managing.Domain.Scenarios;
using Managing.Domain.Users; using Managing.Domain.Users;
using Microsoft.Extensions.Logging; using Microsoft.Extensions.Logging;
using static Managing.Common.Enums; using static Managing.Common.Enums;
@@ -21,6 +22,144 @@ public class GeneticService : IGeneticService
private readonly IBacktester _backtester; private readonly IBacktester _backtester;
private readonly ILogger<GeneticService> _logger; private readonly ILogger<GeneticService> _logger;
// Predefined parameter ranges for each indicator (matching backtestGenetic.tsx)
public static readonly Dictionary<string, (double min, double max)> ParameterRanges = new()
{
// Trading Parameters only - indicator parameters are now handled by IndicatorParameterRanges
["stopLoss"] = (0.2, 50.0), // Minimum 0.2% to cover fees, no upper limit (set to 50% as practical max)
["leverage"] = (1.0, 10.0),
["cooldownPeriod"] = (5.0, 25.0),
["maxLossStreak"] = (0.0, 4.0),
["maxPositionTimeHours"] = (0, 48.0)
};
// Default indicator values per indicator type (matching CustomScenario.tsx)
public static readonly Dictionary<IndicatorType, Dictionary<string, double>> DefaultIndicatorValues = new()
{
[IndicatorType.RsiDivergence] = new() { ["period"] = 14.0 },
[IndicatorType.RsiDivergenceConfirm] = new() { ["period"] = 14.0 },
[IndicatorType.EmaCross] = new() { ["period"] = 14.0 },
[IndicatorType.EmaTrend] = new() { ["period"] = 14.0 },
[IndicatorType.StDev] = new() { ["period"] = 14.0 },
[IndicatorType.ThreeWhiteSoldiers] = new() { ["period"] = 14.0 },
[IndicatorType.MacdCross] = new() {
["fastPeriods"] = 12.0,
["slowPeriods"] = 26.0,
["signalPeriods"] = 9.0
},
[IndicatorType.DualEmaCross] = new() {
["fastPeriods"] = 12.0,
["slowPeriods"] = 26.0
},
[IndicatorType.SuperTrend] = new() {
["period"] = 14.0,
["multiplier"] = 3.0
},
[IndicatorType.SuperTrendCrossEma] = new() {
["period"] = 14.0,
["multiplier"] = 3.0
},
[IndicatorType.ChandelierExit] = new() {
["period"] = 14.0,
["multiplier"] = 3.0
},
[IndicatorType.StochRsiTrend] = new() {
["period"] = 14.0,
["stochPeriods"] = 14.0,
["signalPeriods"] = 9.0,
["smoothPeriods"] = 3.0
},
[IndicatorType.Stc] = new() {
["cyclePeriods"] = 10.0,
["fastPeriods"] = 12.0,
["slowPeriods"] = 26.0
},
[IndicatorType.LaggingStc] = new() {
["cyclePeriods"] = 10.0,
["fastPeriods"] = 12.0,
["slowPeriods"] = 26.0
}
};
// Indicator-specific parameter ranges
public static readonly Dictionary<IndicatorType, Dictionary<string, (double min, double max)>> IndicatorParameterRanges = new()
{
[IndicatorType.RsiDivergence] = new() {
["period"] = (5.0, 50.0)
},
[IndicatorType.RsiDivergenceConfirm] = new() {
["period"] = (5.0, 50.0)
},
[IndicatorType.EmaCross] = new() {
["period"] = (5.0, 200.0)
},
[IndicatorType.EmaTrend] = new() {
["period"] = (5.0, 200.0)
},
[IndicatorType.StDev] = new() {
["period"] = (5.0, 50.0)
},
[IndicatorType.ThreeWhiteSoldiers] = new() {
["period"] = (5.0, 50.0)
},
[IndicatorType.MacdCross] = new() {
["fastPeriods"] = (10.0, 50.0),
["slowPeriods"] = (20.0, 100.0),
["signalPeriods"] = (5.0, 20.0)
},
[IndicatorType.DualEmaCross] = new() {
["fastPeriods"] = (5.0, 300.0),
["slowPeriods"] = (5.0, 300.0)
},
[IndicatorType.SuperTrend] = new() {
["period"] = (5.0, 50.0),
["multiplier"] = (1.0, 10.0)
},
[IndicatorType.SuperTrendCrossEma] = new() {
["period"] = (5.0, 50.0),
["multiplier"] = (1.0, 10.0)
},
[IndicatorType.ChandelierExit] = new() {
["period"] = (5.0, 50.0),
["multiplier"] = (1.0, 10.0)
},
[IndicatorType.StochRsiTrend] = new() {
["period"] = (5.0, 50.0),
["stochPeriods"] = (5.0, 30.0),
["signalPeriods"] = (3.0, 15.0),
["smoothPeriods"] = (1.0, 10.0)
},
[IndicatorType.Stc] = new() {
["cyclePeriods"] = (5.0, 30.0),
["fastPeriods"] = (5.0, 50.0),
["slowPeriods"] = (10.0, 100.0)
},
[IndicatorType.LaggingStc] = new() {
["cyclePeriods"] = (5.0, 30.0),
["fastPeriods"] = (5.0, 50.0),
["slowPeriods"] = (10.0, 100.0)
}
};
// Indicator type to parameter mapping
public static readonly Dictionary<IndicatorType, string[]> IndicatorParamMapping = new()
{
[IndicatorType.RsiDivergence] = ["period"],
[IndicatorType.RsiDivergenceConfirm] = ["period"],
[IndicatorType.EmaCross] = ["period"],
[IndicatorType.EmaTrend] = ["period"],
[IndicatorType.StDev] = ["period"],
[IndicatorType.ThreeWhiteSoldiers] = ["period"],
[IndicatorType.MacdCross] = ["fastPeriods", "slowPeriods", "signalPeriods"],
[IndicatorType.DualEmaCross] = ["fastPeriods", "slowPeriods"],
[IndicatorType.SuperTrend] = ["period", "multiplier"],
[IndicatorType.SuperTrendCrossEma] = ["period", "multiplier"],
[IndicatorType.ChandelierExit] = ["period", "multiplier"],
[IndicatorType.StochRsiTrend] = ["period", "stochPeriods", "signalPeriods", "smoothPeriods"],
[IndicatorType.Stc] = ["cyclePeriods", "fastPeriods", "slowPeriods"],
[IndicatorType.LaggingStc] = ["cyclePeriods", "fastPeriods", "slowPeriods"]
};
public GeneticService( public GeneticService(
IGeneticRepository geneticRepository, IGeneticRepository geneticRepository,
IBacktester backtester, IBacktester backtester,
@@ -46,7 +185,7 @@ public class GeneticService : IGeneticService
double maxTakeProfit, double maxTakeProfit,
List<IndicatorType> eligibleIndicators) List<IndicatorType> eligibleIndicators)
{ {
var id = Guid.NewGuid().ToString(); // Generate unique GUID var id = Guid.NewGuid().ToString();
var geneticRequest = new GeneticRequest(id) var geneticRequest = new GeneticRequest(id)
{ {
Ticker = ticker, Ticker = ticker,
@@ -104,13 +243,17 @@ public class GeneticService : IGeneticService
{ {
_logger.LogInformation("Starting genetic algorithm for request {RequestId}", request.RequestId); _logger.LogInformation("Starting genetic algorithm for request {RequestId}", request.RequestId);
// Update status to running
request.Status = GeneticRequestStatus.Running;
UpdateGeneticRequest(request);
// Create chromosome for trading bot configuration // Create chromosome for trading bot configuration
var chromosome = new TradingBotChromosome(request.EligibleIndicators); var chromosome = new TradingBotChromosome(request.EligibleIndicators, request.MaxTakeProfit);
// Create fitness function // Create fitness function
var fitness = new TradingBotFitness(_backtester, request); var fitness = new TradingBotFitness(_backtester, request);
// Create genetic algorithm // Create genetic algorithm with better configuration
var ga = new GeneticAlgorithm( var ga = new GeneticAlgorithm(
new Population(request.PopulationSize, request.PopulationSize, chromosome), new Population(request.PopulationSize, request.PopulationSize, chromosome),
fitness, fitness,
@@ -118,7 +261,9 @@ public class GeneticService : IGeneticService
new UniformCrossover(), new UniformCrossover(),
GetMutation(request.MutationRate)) GetMutation(request.MutationRate))
{ {
Termination = new GenerationNumberTermination(request.Generations) Termination = new GenerationNumberTermination(request.Generations),
MutationProbability = (float)request.MutationRate,
CrossoverProbability = 0.7f // Fixed crossover rate as in frontend
}; };
// Run the genetic algorithm // Run the genetic algorithm
@@ -131,22 +276,40 @@ public class GeneticService : IGeneticService
_logger.LogInformation("Genetic algorithm completed for request {RequestId}. Best fitness: {Fitness}", _logger.LogInformation("Genetic algorithm completed for request {RequestId}. Best fitness: {Fitness}",
request.RequestId, bestFitness); request.RequestId, bestFitness);
// Update request with results
request.Status = GeneticRequestStatus.Completed;
request.CompletedAt = DateTime.UtcNow;
request.BestFitness = bestFitness;
request.BestIndividual = bestChromosome?.ToString() ?? "unknown";
request.ProgressInfo = JsonSerializer.Serialize(new
{
generation = ga.GenerationsNumber,
best_fitness = bestFitness,
population_size = request.PopulationSize,
generations = request.Generations,
completed_at = DateTime.UtcNow
});
UpdateGeneticRequest(request);
return new GeneticAlgorithmResult return new GeneticAlgorithmResult
{ {
BestFitness = bestFitness, BestFitness = bestFitness,
BestIndividual = bestChromosome?.ToString() ?? "unknown", BestIndividual = bestChromosome?.ToString() ?? "unknown",
ProgressInfo = JsonSerializer.Serialize(new ProgressInfo = request.ProgressInfo,
{ CompletedAt = DateTime.UtcNow
generation = ga.GenerationsNumber,
best_fitness = bestFitness,
population_size = request.PopulationSize,
generations = request.Generations
})
}; };
} }
catch (Exception ex) catch (Exception ex)
{ {
_logger.LogError(ex, "Error running genetic algorithm for request {RequestId}", request.RequestId); _logger.LogError(ex, "Error running genetic algorithm for request {RequestId}", request.RequestId);
// Update request with error
request.Status = GeneticRequestStatus.Failed;
request.ErrorMessage = ex.Message;
request.CompletedAt = DateTime.UtcNow;
UpdateGeneticRequest(request);
throw; throw;
} }
} }
@@ -157,7 +320,7 @@ public class GeneticService : IGeneticService
{ {
"tournament" => new TournamentSelection(), "tournament" => new TournamentSelection(),
"roulette" => new RouletteWheelSelection(), "roulette" => new RouletteWheelSelection(),
"rank" => new RankSelection(), "fitness-weighted" => new RankSelection(), // Use rank selection as approximation
_ => new TournamentSelection() _ => new TournamentSelection()
}; };
} }
@@ -169,69 +332,224 @@ public class GeneticService : IGeneticService
} }
/// <summary> /// <summary>
/// Chromosome representing a trading bot configuration /// Chromosome representing a trading bot configuration with predefined parameter ranges
/// </summary> /// </summary>
public class TradingBotChromosome : ChromosomeBase public class TradingBotChromosome : ChromosomeBase
{ {
private readonly List<IndicatorType> _eligibleIndicators; private readonly List<IndicatorType> _eligibleIndicators;
private readonly double _maxTakeProfit;
private readonly Random _random = new Random(); private readonly Random _random = new Random();
public TradingBotChromosome(List<IndicatorType> eligibleIndicators) : base(eligibleIndicators.Count + 5) // Gene structure:
// 0-2: Trading parameters (takeProfit, stopLoss, cooldownPeriod, maxLossStreak)
// 3-6: Indicator selection (up to 4 indicators)
// 7+: Indicator parameters (period, fastPeriods, etc.)
public TradingBotChromosome(List<IndicatorType> eligibleIndicators, double maxTakeProfit)
: base(4 + 4 + eligibleIndicators.Count * 8) // Trading params + indicator selection + indicator params
{ {
_eligibleIndicators = eligibleIndicators; _eligibleIndicators = eligibleIndicators;
_maxTakeProfit = maxTakeProfit;
} }
public override Gene GenerateGene(int geneIndex) public override Gene GenerateGene(int geneIndex)
{ {
if (geneIndex < _eligibleIndicators.Count) if (geneIndex < 4)
{ {
// Gene represents whether an indicator is selected (0 or 1) // Trading parameters
return geneIndex switch
{
0 => new Gene(GetRandomInRange((0.9, _maxTakeProfit))), // Take profit (0.9% to max TP)
1 => new Gene(GetRandomInRange(GeneticService.ParameterRanges["stopLoss"])), // Stop loss
2 => new Gene(GetRandomIntInRange(GeneticService.ParameterRanges["cooldownPeriod"])), // Cooldown period
3 => new Gene(GetRandomIntInRange(GeneticService.ParameterRanges["maxLossStreak"])), // Max loss streak
_ => new Gene(0)
};
}
else if (geneIndex < 8)
{
// Indicator selection (0 = not selected, 1 = selected)
return new Gene(_random.Next(2)); return new Gene(_random.Next(2));
} }
else else
{ {
// Additional genes for other parameters // Indicator parameters
return geneIndex switch var indicatorIndex = (geneIndex - 8) / 8;
var paramIndex = (geneIndex - 8) % 8;
if (indicatorIndex < _eligibleIndicators.Count)
{ {
var i when i == _eligibleIndicators.Count => new Gene(_random.Next(1, 11)), // Stop loss percentage var indicator = _eligibleIndicators[indicatorIndex];
var i when i == _eligibleIndicators.Count + 1 => new Gene(_random.Next(1, 21)), // Take profit percentage var paramName = GetParameterName(paramIndex);
var i when i == _eligibleIndicators.Count + 2 => new Gene(_random.Next(1, 101)), // Position size percentage
var i when i == _eligibleIndicators.Count + 3 => new Gene(_random.Next(1, 51)), // Max positions if (paramName != null && GeneticService.IndicatorParamMapping.ContainsKey(indicator))
var i when i == _eligibleIndicators.Count + 4 => new Gene(_random.Next(1, 11)), // Risk level {
_ => new Gene(0) var requiredParams = GeneticService.IndicatorParamMapping[indicator];
}; if (requiredParams.Contains(paramName))
{
// Use indicator-specific ranges only
if (GeneticService.IndicatorParameterRanges.ContainsKey(indicator) &&
GeneticService.IndicatorParameterRanges[indicator].ContainsKey(paramName))
{
var indicatorRange = GeneticService.IndicatorParameterRanges[indicator][paramName];
// 70% chance to use default value, 30% chance to use random value within indicator-specific range
if (_random.NextDouble() < 0.7)
{
var defaultValues = GeneticService.DefaultIndicatorValues[indicator];
return new Gene(defaultValues[paramName]);
}
else
{
return new Gene(GetRandomInRange(indicatorRange));
}
}
else
{
// If no indicator-specific range is found, use default value only
var defaultValues = GeneticService.DefaultIndicatorValues[indicator];
return new Gene(defaultValues[paramName]);
}
}
}
}
return new Gene(0);
} }
} }
public override IChromosome CreateNew() public override IChromosome CreateNew()
{ {
return new TradingBotChromosome(_eligibleIndicators); return new TradingBotChromosome(_eligibleIndicators, _maxTakeProfit);
} }
public override IChromosome Clone() public override IChromosome Clone()
{ {
var clone = new TradingBotChromosome(_eligibleIndicators); var clone = new TradingBotChromosome(_eligibleIndicators, _maxTakeProfit);
clone.ReplaceGenes(0, GetGenes()); clone.ReplaceGenes(0, GetGenes());
return clone; return clone;
} }
public List<IndicatorType> GetSelectedIndicators() public List<GeneticIndicator> GetSelectedIndicators()
{ {
var selected = new List<IndicatorType>(); var selected = new List<GeneticIndicator>();
for (int i = 0; i < _eligibleIndicators.Count; i++) var genes = GetGenes();
for (int i = 0; i < 4; i++) // Check first 4 indicator slots
{ {
if (GetGene(i).Value.ToString() == "1") if (genes[4 + i].Value.ToString() == "1" && i < _eligibleIndicators.Count)
{ {
selected.Add(_eligibleIndicators[i]); var indicator = new GeneticIndicator
{
Type = _eligibleIndicators[i]
};
// Add parameters for this indicator
var baseIndex = 8 + i * 8;
var paramName = GetParameterName(0); // period
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.Period = Convert.ToInt32(genes[baseIndex].Value);
}
paramName = GetParameterName(1); // fastPeriods
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.FastPeriods = Convert.ToInt32(genes[baseIndex + 1].Value);
}
paramName = GetParameterName(2); // slowPeriods
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.SlowPeriods = Convert.ToInt32(genes[baseIndex + 2].Value);
}
paramName = GetParameterName(3); // signalPeriods
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.SignalPeriods = Convert.ToInt32(genes[baseIndex + 3].Value);
}
paramName = GetParameterName(4); // multiplier
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.Multiplier = Convert.ToDouble(genes[baseIndex + 4].Value);
}
paramName = GetParameterName(5); // stochPeriods
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.StochPeriods = Convert.ToInt32(genes[baseIndex + 5].Value);
}
paramName = GetParameterName(6); // smoothPeriods
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.SmoothPeriods = Convert.ToInt32(genes[baseIndex + 6].Value);
}
paramName = GetParameterName(7); // cyclePeriods
if (paramName != null && HasParameter(_eligibleIndicators[i], paramName))
{
indicator.CyclePeriods = Convert.ToInt32(genes[baseIndex + 7].Value);
}
selected.Add(indicator);
} }
} }
return selected; return selected;
} }
public TradingBotConfig GetTradingBotConfig(GeneticRequest request) public TradingBotConfig GetTradingBotConfig(GeneticRequest request)
{ {
var selectedIndicators = GetSelectedIndicators();
var genes = GetGenes(); var genes = GetGenes();
var selectedIndicators = GetSelectedIndicators();
// Ensure we have at least one indicator
if (!selectedIndicators.Any())
{
selectedIndicators.Add(new GeneticIndicator { Type = _eligibleIndicators[0] });
}
// Get take profit from chromosome (gene 0)
var takeProfit = Convert.ToDouble(genes[0].Value);
// Calculate stop loss based on 1.1:1 risk-reward ratio (gene 1)
var stopLoss = Convert.ToDouble(genes[1].Value);
// Ensure minimum 1.1:1 risk-reward ratio and minimum 0.2% to cover fees
var minStopLossForRR = takeProfit / 1.1;
var minStopLossForFees = 0.2; // Minimum 0.2% to cover trading fees
var minStopLoss = Math.Max(minStopLossForRR, minStopLossForFees);
var maxStopLoss = takeProfit - 0.1; // Ensure SL is less than TP with some buffer
// Adjust stop loss if it doesn't meet the constraints
if (stopLoss > maxStopLoss || stopLoss < minStopLoss)
{
stopLoss = GetRandomInRange((minStopLoss, maxStopLoss));
}
// Build scenario using selected indicators
var scenario = new Scenario($"Genetic_{request.RequestId}_Scenario", 1);
foreach (var geneticIndicator in selectedIndicators)
{
var indicator = ScenarioHelpers.BuildIndicator(
type: geneticIndicator.Type,
name: $"Genetic_{geneticIndicator.Type}_{Guid.NewGuid():N}",
period: geneticIndicator.Period,
fastPeriods: geneticIndicator.FastPeriods,
slowPeriods: geneticIndicator.SlowPeriods,
signalPeriods: geneticIndicator.SignalPeriods,
multiplier: geneticIndicator.Multiplier,
stochPeriods: geneticIndicator.StochPeriods,
smoothPeriods: geneticIndicator.SmoothPeriods,
cyclePeriods: geneticIndicator.CyclePeriods
);
scenario.AddIndicator(indicator);
}
return new TradingBotConfig return new TradingBotConfig
{ {
@@ -242,28 +560,83 @@ public class TradingBotChromosome : ChromosomeBase
BotTradingBalance = request.Balance, BotTradingBalance = request.Balance,
IsForBacktest = true, IsForBacktest = true,
IsForWatchingOnly = false, IsForWatchingOnly = false,
CooldownPeriod = 0, CooldownPeriod = Convert.ToInt32(genes[2].Value),
MaxLossStreak = 3, MaxLossStreak = Convert.ToInt32(genes[3].Value),
FlipPosition = false, FlipPosition = false,
FlipOnlyWhenInProfit = true, FlipOnlyWhenInProfit = true,
CloseEarlyWhenProfitable = true,
MaxPositionTimeHours = 0, // Always 0 to prevent early position cutting
UseSynthApi = false,
UseForPositionSizing = false,
UseForSignalFiltering = false,
UseForDynamicStopLoss = false,
Scenario = scenario,
MoneyManagement = new MoneyManagement MoneyManagement = new MoneyManagement
{ {
Name = $"Genetic_{request.RequestId}_MM", Name = $"Genetic_{request.RequestId}_MM",
Timeframe = request.Timeframe, Timeframe = request.Timeframe,
StopLoss = Convert.ToDecimal(genes[_eligibleIndicators.Count].Value), StopLoss = Convert.ToDecimal(stopLoss),
TakeProfit = Convert.ToDecimal(genes[_eligibleIndicators.Count + 1].Value), TakeProfit = Convert.ToDecimal(takeProfit),
Leverage = 1.0m Leverage = 1.0m
}, },
RiskManagement = new RiskManagement RiskManagement = new RiskManagement
{ {
RiskTolerance = (RiskToleranceLevel)Convert.ToInt32(genes[_eligibleIndicators.Count + 4].Value) RiskTolerance = RiskToleranceLevel.Moderate
} }
}; };
} }
private double GetRandomInRange((double min, double max) range)
{
return _random.NextDouble() * (range.max - range.min) + range.min;
}
private int GetRandomIntInRange((double min, double max) range)
{
return _random.Next((int)range.min, (int)range.max + 1);
}
private string? GetParameterName(int index)
{
return index switch
{
0 => "period",
1 => "fastPeriods",
2 => "slowPeriods",
3 => "signalPeriods",
4 => "multiplier",
5 => "stochPeriods",
6 => "smoothPeriods",
7 => "cyclePeriods",
_ => null
};
}
private bool HasParameter(IndicatorType indicator, string paramName)
{
return GeneticService.IndicatorParamMapping.ContainsKey(indicator) &&
GeneticService.IndicatorParamMapping[indicator].Contains(paramName);
}
} }
/// <summary> /// <summary>
/// Fitness function for trading bot optimization /// Genetic indicator with parameters
/// </summary>
public class GeneticIndicator
{
public IndicatorType Type { get; set; }
public int? Period { get; set; }
public int? FastPeriods { get; set; }
public int? SlowPeriods { get; set; }
public int? SignalPeriods { get; set; }
public double? Multiplier { get; set; }
public int? StochPeriods { get; set; }
public int? SmoothPeriods { get; set; }
public int? CyclePeriods { get; set; }
}
/// <summary>
/// Multi-objective fitness function for trading bot optimization
/// </summary> /// </summary>
public class TradingBotFitness : IFitness public class TradingBotFitness : IFitness
{ {
@@ -297,8 +670,8 @@ public class TradingBotFitness : IFitness
_request.RequestId _request.RequestId
).Result; ).Result;
// Calculate fitness based on backtest results // Calculate multi-objective fitness based on backtest results
var fitness = CalculateFitness(backtest); var fitness = CalculateMultiObjectiveFitness(backtest, config);
return fitness; return fitness;
} }
@@ -309,29 +682,36 @@ public class TradingBotFitness : IFitness
} }
} }
private double CalculateFitness(Backtest backtest) private double CalculateMultiObjectiveFitness(Backtest backtest, TradingBotConfig config)
{ {
if (backtest == null || backtest.Score == null) if (backtest == null || backtest.Statistics == null)
return 0.1; return 0.1;
// Use the backtest score as the primary fitness metric var stats = backtest.Statistics;
var baseFitness = backtest.Score;
// Apply additional factors
var tradeCount = backtest.Positions?.Count ?? 0;
var winRate = backtest.WinRate;
var finalPnl = backtest.FinalPnl;
// Penalize if no trades were made
if (tradeCount == 0)
return 0.1;
// Bonus for good win rate
var winRateBonus = winRate > 0.6 ? 10 : 0;
// Bonus for positive PnL // Multi-objective fitness function (matching frontend)
var pnlBonus = finalPnl > 0 ? 20 : 0; var pnlScore = Math.Max(0, (double)stats.TotalPnL / 1000); // Normalize PnL
var winRateScore = backtest.WinRate / 100.0; // Normalize win rate
return baseFitness + winRateBonus + pnlBonus; var riskRewardScore = Math.Min(2, (double)stats.WinningTrades / Math.Max(1, Math.Abs((double)stats.LoosingTrades)));
var consistencyScore = 1 - Math.Abs((double)stats.TotalPnL - (double)backtest.FinalPnl) / Math.Max(1, Math.Abs((double)stats.TotalPnL));
// Risk-reward ratio bonus
var riskRewardRatio = (double)(config.MoneyManagement.TakeProfit / config.MoneyManagement.StopLoss);
var riskRewardBonus = Math.Min(0.2, (riskRewardRatio - 1.1) * 0.1);
// Drawdown score (normalized to 0-1, where lower drawdown is better)
var maxDrawdownPc = Math.Abs((double)stats.MaxDrawdownPc);
var drawdownScore = Math.Max(0, 1 - (maxDrawdownPc / 50));
// Weighted combination
var fitness =
pnlScore * 0.3 +
winRateScore * 0.2 +
riskRewardScore * 0.2 +
consistencyScore * 0.1 +
riskRewardBonus * 0.1 +
drawdownScore * 0.1;
return Math.Max(0, fitness);
} }
} }